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Abstract. One starts with a representation of a given abstract group G = H + sH (where H 
is its subgroup of index 2, and s is a coset representative) by a group of unitary and 
antiunitary operators in the state space of a quantum system. Co-representation theory 
maps further these operators into matrices, which are linear operators in the space C" of 
number columns, but it fails to preserve homomorphism. An equivalent theory in terms of 
unitary matrices and antimatrices (antilinear operators in C") which is based on iso- 
morphism with the mentioned group of operators is presented. The connections (sub- 
duction on the one side and *-induction on the other) between the set of all unitary 
irreducible matrix representations of H and the set of all unitary irreducible matrix- 
antimatrix representations of G are studied. Finally, a simple construction of the latter from 
the former is given. 

1. Introduction 

Quantum systems which contain an odd number of fermions and have a Hamiltonian 
with time-reversal symmetry display the so called Kramers' degeneracy (even multi- 
plicity) of their energy levels. Kramers' discovery (Kramers 1930) of this fact inspired 
Wigner to invent the theory of co-representations (Wigner 1932, 1959, Jansen and 
Boon 1967). It solved the problem of additional degeneracy due to antilinear symmetry 
operators in the most general case, and it found application especially in the theory of 
magnetic groups (Bradley and Cracknell 1972). 

We deal with an abstract group G = H + sH (here and throughout '+', when it is 
between two disjoint sets, denotes their union), where H is a subgroup of G of index 2 
and s is an arbitrary but fixed coset representative. It is desirable in treating some 
symmetry problems in quantum mechanics to have a homomorphic mapping of G onto a 
group B(a)(G): 

G ~B(a) (G)~B(H)+Ba(~)B(H) ,  (1) 

where B ( H )  = { d ( h ) / h  E H }  is a grouf of unitary operators acting in a unitary state space 
V of a given quantum system, and Da(s) is an antilinear unitary (in short: antiunitary) 
operator in V, e.g. the time-reversal operator (Messiah 1962). We write (a) as an index 
in &(G) to indicate that it contains both linear operators B ( h )  and antilinear ones like 
I%.(s), indexed by a without brackets. 
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In co-representation theory one maps the entire a(a)(G) onto a set of unitary 
matrices, which are in their turn linear operators in the space C" of number columns. 
Obviously, the set of matril t:s which makes up a co-representation of G is not a group 
itself, and, clearly, there is no homomorphism of G onto this set. 

It is our first aim to show that the elements from the coset a a ( s ) a ( H )  can be 
represented by antilinear unitary operators in C", and, what is more, we further 
establish an isomorphism of the group of operators d(,)(G) onto a group of unitary 
matrices and antimatrices (the latter are defined below). Combining homomorphism 
(1) with this isomorphism, one sees that the group G is homomorphically mapped onto a 
group of unitary matrices and antimatrices, and so the standard apparatus of group 
representation theory can be adapted and utilised. 

Our second aim is to develop a general and practical method of construction of all 
the finite-dimensional unitary irreducible matrix-antimatrix representations (UMAM 
irreps) of any given group G assuming that all the finite-dimensional unitary irreducible 
matrix representations (UM irreps) of its invariant subgroup H are known. To this 
purpose we introduce *-induction, the analogue of induction, well known in the theory 
of linear representations (Jansen and Boon 1967, p 133). For the case when the 
*-induced UMAM representation (UMAM rep) is reducible, we give a shortcut: a direct 
construction of the UMAM irreps. For those groups H which have no other irreps than 
finite-dimensional unitary ones (such are finite groups and infinite compact ones), it will 
turn out that all the UMAM irreps of G are found in this way. 

In a recent paper van den Broek (1979) solves a problem which is more ambitious, 
because he starts with a subgroup of G of an index larger than or equal to two, and he 
uses the method of generalised induction (Shaw and Lever 1974). This approach seems 
to be inspired by the well known Clifford-Frobenius solution (Clifford 1937) for the 
analogous problem in linear representation theory. However, there is an essential 
difference between a group of unitary operators and a group consisting of unitary and 
antiunitary ones. Whereas in the latter the index-2 subgroup of all unitary operators 
plays an obviously exceptional role, in the former there is nothing to distinguish 
between various invariant subgroups. Thus, in the linear case one naturally wants to 
have a method of construction of UM irreps of G starting from an invariant subgroup of 
index n. For construction of UMAM irreps of G it is most natural to confine oneself to 
n = 2 .  

Whenever appropriate, we compare the method of construction of UMAM irreps of 
G with the analogous procedure for UM irreps. 

2. Unitary matrix-antimatrix representations 

2.1. Antimatrices 

An antilinear operator d, in a finite-dimensional unitary vector space V,, is charac- 
terised by 

A,(ax + P y )  = ff.*Aax +@*day, VX, Y E Vm f f , P E C ,  (2) 

where the asterisk denotes complex conjugation, and n is the dimension of V,. The 
antilinear operator A, is unitary iff 
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which leads to the equivalent condition 
=/$;I, 

We call the antilinear operators in the space C" of number columns antimatrices, 
because the matrices themselves are linear operators in C". In a previous paper 
(Herbut and VujiEiC 1967) we used the longer term 'antilinear matrices', which we 
abandon now because it might be misunderstood as indicating a special class of matrix. 

The antimatrices are very simple to deal with owing to the following facts: 
(i) The natural basis ((1 0 .  . . O)', (0 1 0 . . . O)t, . . . , (0. . . 0 1)') (where t denotes 

transposition) in C" defines a unique antimatrix KO by the requirement that KO leaves 
each vector in this basis invariant. It has the properties: 

(4) 
( K i  denotes the adjoint), i.e. the antimatrix KO is unitary, Hermitian, and by 
consequence an involution (i.e. K ?  = I, where I is the unit n x n matrix); and 

K-l =K1' - 
0 o - K O  

KOA = A*KO ( 5 )  

for any matrix A. 
AaKo  is a matrix 

called the matrix factor of A,. In particular, an antimatrix A,  is unitary iff its matrix 
factor A is unitary. 

(ii) Any antimatrix A, can be written in the form AKo,  where A 

2.2. Homomorphism 

For d c a ) ( G )  (cf (1)) a UMAM rep is obtained by choosing an orthonormal basis 
{ e l ,  e2, .  . . , e , } c  V,, and evaluating the matrix elements of the unitary linear and 
antilinear operators: 

Dij(h) = (ei, B(h)ej) ,  Vh  E H ,  (6 )  

o i j ( s )  = (eL, Ba(s )e j ) ,  (7) 
where i, j = 1 , 2 ,  . . I , n. Thus one maps 

is an antimatrix. 
In this way one obtains the uMAM group 

D(a)(G)~DDH)+Da(s)D(H) ,  (10) 

where D(H)={D(h)lh E H } .  D(,)(G) is an isomorphic image of d( , ) (G) ,  and 
consequently a homomorphic image of G :  

1 D(h)D(h ' )  =D(hh') ,  

Vh, h'EH. I D,(sh)D(h') = D,(shh'), 

D(h)D,(sh') = D,(hsh'), 
(lla-d) 

D,(sh)D,(sh') = D(shsh'),) 
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A word of warning seems to be in place: when the antimatrices in ( 1  1 )  are factorised 
into their matrix factors and KO, homomorphism does not apply in general to the matrix 
factors, e.g. D(shh') #D(sh)D(h')  (unless D(h ' )  is real, as seen from ( l l b ) ) .  Actually, 
( 1  la-d)  only in terms of the matrices D ( h )  and the matrix factors D(sh') are the known 
defining relations of a co-representation (Jansen and Boon 1967, p 171). 

Lemma 1. Let D ( H )  be a given UM rep of the subgroup H of G. A unitary antimatrix 
D,(s) defines the coset D , ( s ) D ( H ) ,  and thus completes D ( H )  into a UMAM rep D(,)(G) 
of G, iff 

D,'(s)D(h)D,(s) = D(s-'hs), Vh E H ,  ( 1 2 ~ )  

0 3 s )  = D(s2).  (12b)  

Proof. Equations (12)  obviously follow from (11).  That the former also imply the latter 
is a consequence of: hsh'= s(s-'hs)h', and shsh'= s*(s-'hs)h'. QED 

Since we shall give a comparative presentation of the construction of the UMAM and 
the UM irreps of G, it is noteworthy that an analogous lemma (where D,(s) is replaced 
by a unitary matrix D ( s ) )  holds in the case of UM reps. 

2.3. Irreducibility and equivalence 

Defining the irreducibility of linear-antilinear reps of G in full analogy with the linear 
case, one can formulate the following criterion for it (it is the linear-antilinear analogue 
of the First Schur lemma-Jansen and Boon 1967, p 99):  

A linear-antilinear rep of G is irreducible iff there is no other Hermitian operator 
but AI, A E R ,  that commutes with all linear and antilinear operators of the rep (for a 
proof see Theorem I1 in Dimmock 1963). 

By definition two UMAM reps of G are equivalent if there exists a nonsingular matrix 
T making one the similarity transform of the other, i.e. 

D;a)(g) = TD(a)(g)T-', Vg E G. (13)  
If the UMAM reps D(a)(G) and D{,)(G) are irreducible, T can be chosen to be 

unitary. Namely, adjoining (13)  and making use of ( 3 b )  and of the homomorphism, one 
concludes that the Hermitian matrix TT' commutes with each element of the UMAM 

Hence the UMAM analogue of the Schur lemma gives TT' = AI, A E R, so 
T is unitary. 

13) for the matrix factors of unitary antimatrices then becomes 

2 
irrep D(,,(G: 
that U = A - '  

Relation 

DL(sh) = D'(sh)Ko = UD(sh)KOU' = UD(sh)U'Ko, 

i.e. 

D'(sh) = UD(sh)U', Vh E H .  (14)  
This means that the matrix factors of the unitary antimatrices transform by so called 
unitary congruence. (As to the canonical form under unitary congruence, which is the 
analogue of the diagonal form under unitary similarity, see VujiEiC et a1 1972 and 
Herbut et a1 1974.) 

If in a given UMAM rep D[,,(G) (cf (10) )  of G = H + sH one confines oneself to H, 
one obtains the subduced UM rep of H denoted by D(,)(G)LH. 
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Clearly, if two UMAM reps of G are equivalent, so are the subduced UM reps of H. 
One wonders if the converse is also true. An equivalent, but simpler form of this 
question is: if D ( H )  is any given UM rep of H, can there exist two inequivalent UMAM 
reps of G, both subducing into the same D(H)? 

The following theorem on equivalence of UMAM reps of G answers this question. 

Theorem 1. (The Basic Theorem). Two UMAM reps of G are equivalent iff the 
subduced UM reps of H are equivalent. 

A proof for the analogous theorem in co-representation theory is given in Jansen 
and Boon (1967, p 174). (If one makes use of homomorphism, valid for a UMAM rep 
and not for a co-representation, this proof becomes much more natural.) 

Remark 1. In the case of UM reps one has no analogue of the Basic Theorem. 

Remark 2. UMAM reps have no invariant trace for their characterisation and easy 
manipulation. This is due to the fact that the matrix factors of unitary antimatrices 
transform by unitary congruence (cf (14)), and not by similarity transformation. The 
Basic Theorem can be viewed as a natural compensation for this shortcoming: two 
UMAM reps are equivalent iff the characters of the subduced UM reps of H are equal. 

3. Connections between irreps of G and H 

It is the aim of this section to study the natural connections between the UM and UMAM 
irreps of G and the UM irreps of H. 

3.1. Classes of irreps 

Let D(G)=D(H)+D(s )D(H)  be a UM rep of G. ~ ( G ) E D ( H ) + [ - D ( s ) ] D ( H )  is 
called its associate rep. 

It is easy to show that D ( G ) + a ( G )  maps one UM rep onto another, and one UM 

irrep onto another. This map is an involution, and consequently it breaks up the set of 
all inequivalent irreps of G into two-element and one-element classes. The former are 
called pairs of associates, and the latter self-associates. h ( g ) l g  E G }  and G ( g ) / g  E G }  
are the characters of a pair of associates iff x ( h )  = i ( h )  and x ( s h )  = - i ( s h ) ,  V h  E H ;  
k ( g ) l g  E G }  is the character of a self-associate iff x ( s h )  = 0, V h  E H .  

Analogously, by D ( h )  -+ D ( h ) ,  V h  E H, and D,(s) -+ -D,(s) one can define also the 
mapping of any UMAM rep of G onto its associate: D(a)(G)+6(al(G),  but they both 
belong to one self-associate equivalence class because -D,(s) = iDa(s)(-i). Therefore, 
this map does not give any classification of the UMAM irreps of G in contrast with the 
case of UM irreps, and consequently there will be considerable differences in the 
mentioned connections (cf Theorems 2 and 3). 

The map D ( h ) - + D ( h ) = D ( s - ' h s ) ,  V h  EH, is called s-conjugation of D ( H ) .  The 
s-conjugations for all choices of s from the coset give one and the same map of the set of 
all inequivalent UM irreps of H onto itself (Jansen and Boon 1967, p 142). Owing to the 
involutionary property of this map, this set is broken up into one-element and 
two-element classes, the so called orbits. A UM irrep of a one-element orbit is called 
self-s-conjugate or 1st kind irrep, and a UM irrep of a two-element orbit is called 
non-self-s-conjugate or 2nd kind irrep. k ( h ) l h  E H }  is the character of a 1st kind irrep 
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i f f  , f (h )=x(s - 'hs )  = x ( h ) ,  V h  E H ;  h ( h ) l h  ~ H } a n d G ( h ) l h  E H }  are the charactersof 
a pair of mutually s-conjugate irreps iff there exists h' EH, such that ~ ( h ' )  # f ( h ' ) .  

The mappingD(h) + D*(h)  =D*(s-'hs), V h  E H, we call complex-s-conjugation, or 
by symbol *-s-conjugation of D ( H ) .  It is easy to see that again, irrespective of the 
choice of s from the coset, one has one and the same map of the set of all inequivalent 
UM irreps of H onto itself giving a decomposition into one-element and two-element 
*-orbits (which are, in general, different from the orbits). The elements of the former 
are characterised by , f* (h)  =,y*(s-'hs) = ~ ( h ) ,  V h  EH, and are called self-*+-con- 
jugate irreps. Any UM irreps of H belong to a two-element *-orbit iff there exists h' E H 
such that f * ( h ' )  # ~ ( h ' ) .  

3.2. Subduction 

Lemma 2. Every UMAM rep of G, D(a)(G),  when subduced, gives a self-*+-conjugate 
UM rep of H. 

Proof. Let x ( h )  be the character of D(.)(G)JH. Then the homomorphism gives 
D(s-'hs) = KoD-l(s)D(h)D(s)Ko, V h  EH. Multiplying from the left and from the 
right by KO, one obtains x*(s- 'hs) = ~ ( h ) ,  V h  EH. QED 

Remark 3. An analogous lemma is valid in the case of UM reps of G. 
Now we can formulate the first natural connection. 

Theorem 2. (Theorem on subduction) 
(a) Let d ( G )  be any UM irrep of G. When subducing it to H one of the following two 

cases will occur: 
(1) d ( G ) J H  is irreducible iff d ( G )  is non-self-associate; then the obtained d ( H )  = 

d ( G ) J H  is self-s-conjugate, and both d ( G )  and d(G)  subduce into the same d ( H )  up to 
equivalence. 

(2) d ( G ) J H  is reducible iff d ( G )  is self-associate; then d ( G ) J H  reduces into a pair 
of inequivalent mutually s-conjugate irreps of H. 

(b) Let d(.,(G) be any UMAM irrep of G. When subducing it to H one of the 
following three mutually exclusive possibilities will occur: 

(1") The subduced UM rep d ( a , ( G ) J H  is irreducible; then d ( H )  = d ( a ) ( G ) J H  is 
self-*-s-conjugate. 

(2") The UM rep d( , ) (G)JH = D ( H )  is reducible; then it reduces into two UM irreps 
of H which are mutually *-s-conjugate: D ( h )  - d ( h )  4 d*(h) ,  V h  EH. There are two 
subcases: 

(2*a) The IJM irreps d ( H )  and 6*(H)  are equivalent. 
(2*b) They are inequivalent. 
The results of Theorem 2 are not new (Jansen and Boon 1967, pp 162 and 176). 

They are presented here because they are inseparably tied to the second natural 
connection (Theorem 3). 

Remark 4. Part (b) of the Theorem on subduction has, as a by-product, a classification 
( l* ,  2*a, and 2*b kind) of the UM irreps of H. In the following we give three more 
classifications, and all of them will be seen to amount to the same (see table 2). Owing to 
the Basic Theorem, with this the UMAM irreps d ( a ) ( G )  are classified accordingly. 
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3.3. Induction and *-induction 

Lemma 3. Let { d ( h ) l h  EH} be any given UM irrep of H. Then defining 

one obtains a UMAM rep of G :  D(a,(G)..D(H)+Da(s)D(H). 
Proof is immediately obtained by checking via (12a) and (12b) of Lemma 1. 
We call this new construction, i.e. (15a, b ) ,  *-induction. The *-induced UMAM rep of 

G we denote by d ( H )  T G. 
As is known from the literature (Jansen and Boon 1967, p 133), the construction 

analogous to (15a, b ) ,  but without * and KO, gives a UM rep of G :  d(H)$G,  and this 
construction is called induction. 

The aim of the next theorem is to connect the UMAM irreps of G with the UM irreps 
of H by using the *-induction procedure (and by contrasting it with the known 
connection for UM irreps of G) .  From the point of view of construction of UMAM irreps 
of G it will turn out that *-induction is not practical in all cases, and therefore it will be 
supplemented by a more direct evaluation in Theorem 4. 

Theorem 3. (Theorem on induction and on *-induction) 
(a l )  The induced UM rep, d ( H ) T G  = D ( G ) ,  is reducible iff d ( H )  is a self-s- 

conjugate UM irrep of H, i.e. iff there exists a unitary matrix Z such that d ( h ) =  
Z - ' d ( h ) Z ,  V h  EH; then Z can be chosen so that Z 2  = d ( s 2 )  andD(G) reduces into two 
inequivalent mutually associate UM irreps of G :  

d ( H )  + Z d ( H )  and d ( H )  +(-Z)d(H)(up to equivalence). 

(2) The induced UM rep of G is irreducible iff d ( H )  is a non-self-s-conjugate UM 

irrep of H ;  then d ( G )  = d ( H ) T G  is self-associate and d ( H )  and J ( H )  induce equivalent 
UM irreps of G. 

(bl") The *-induced UMAM rep of G is reducible iff there exists a unitary matrix Z 
such that d * ( h )  = Z - ' d ( h ) Z ,  V h  E H ,  and 22" = d ( s 2 ) ;  then D ( , ) ( G ) = d ( H ) ; G  
reduces into two UMAM irreps of G, both equivalent to d( , ) (G) = d ( H )  + Z K o d ( H ) .  

(2*) When d ( H )  9 G is irreducible, then we write it as d ( a ) ( G ) ,  and two subcases 
should be distinguished according to whether d ( H )  and d*(H) in the *-induction 
formula (15a) are equivalent or not: 

(2*a) One has a UMAM irrep d ( a ) ( G )  and d ( H ) - d * ( H )  iff there exists a unitary 
matrix Z such that d * ( h )  = Z - ' d ( h ) Z ,  V h  E H ,  and Z Z *  = -d(s2) .  

(2*b) One has a UMAM irrep d( , ) (G) and d ( H )  4 d*(H);  a necessary and sufficient 
condition for this is the inequivalence of d ( H )  and d*(H)  by itself. 

Proof. Part (a) of the Theorem is known (Jansen and Boon 1967, p 162), but we have 
adapted it to be maximally analogous to the UMAM case. To contrast the arguments in 
the UM and the UMAM cases we give a proof of part (a) in the Appendix. 

To prove part (b) of the Theorem, let us start with (2*b), which is simplest to prove. 
Here J*(H) 4 d ( H )  entails irreducibility of d ( H )  T G because otherwise subduction of 
the latter (after its reduction into irreducible components) would result (due to Lemma 
2) in at least two self-*+-conjugate UM reps of H. This would be in contradiction with 
the fact that d ( H )  i d * ( H )  is the only self-*+-conjugate UM rep available. 
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The common property of the (1") and the (2") cases is 

H"(h) = Z t d ( h ) 2 ,  Vh E H ,  (16) 

where Z is a unitary matrix defined herewith uniquely up to an arbitrary phase factor. 
The corresponding UMAM reps d ( H )  G differ by being reducible or irreducible. 
According to the linear-antilinear analogue of Schur's lemma (cf S2)  the former 
commutes with a non-trivial Hermitian matrix, whereas the latter does not. To find 
necessary and sufficient conditions for the case when such a non-trivial matrix exists, let 
us write a general Hermitian matrix in block-matrix form (the size of the submatrices is 
as in (15a, b) ) :  

(;+ i), where A t  = A ,  Dt = D. 

It commutes with (15a) iff A = aI, D = SI, B = pZ, a,  S E R ,  p E C. Further, it also 
commutes with (15b)  iff a = S  and either p = O  or p#O and ZZ*=d(s2) .  Hence, 
d ( H )  7 G is reducible iff 

ZZ" = d(s2 ) .  (17) 

It is straightforward to check that the unitary matrix 

transforms by similarity d(H)$G into d(,)(G) 4 de)(G),  where d(,,(G) 3 

As suggested by (17), there is a general relation between 2 and d(s2)  derived as 
follows: inserting Kz = I, replacing h by shs-' and taking the similarity transform by Z 
of equation (16), one obtains 

d ( H )  +ZKod(H). 

(ZKo)d(h)(ZKo)-' = d(shs- ')  (18) 

leading to (2Ko)2d(h)(ZKo)-2 = d(s2)d(h)d-'(s2),  which implies (through Schur's 
lemma for UM irreps) 

d-1(s2)(2Ko)2 = ei+'I, 

i.e. 
ZZ" = ei+'d(s2). 

It is important to note that eia does not depend on the phase factor in the choice of Z, so 
that it is a characteristic property of the UM irrep d ( H )  (being one and the same for all 
the UM irreps equivalent to it). 

Applying (ZKo) , , . (ZK0)-' to (19) and taking into account (18) one concludes that 
ei+' has to be real, i.e. *le Since the + sign corresponds to the reducible case, the 
remaining possibility, i.e. the - sign, corresponds to the (2"a) case. QED 

Remark 5. The classification of the UM irreps of H used in the Theorem on *-induction, 
i.e. (l"), (2"a) and (2"b), is the same as the one that appeared in the Theorem on 
subduction. This is obvious from the fact that induction and *-induction on the one 
hand and subduction on the other (as procedures which connect UM and UMAM irreps of 
G with UM irreps of H )  are in a broader sense inverse to each other. (For the direct 
inversion of subduction see the Conclusions.) 
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In each of the following tables we summarise the different definitions of the same 
classification of the UM irreps of H connected with the UM and the UMAM irreps of G 
respectively. In the latter we add the character test known in the literature (Dimmock 
1963). In co-representation theory one uses the terms first, second, and third kind 
instead of (l*), (2") and (2"b) respectively (Jansen and Boon 1967, p 181). 

Table 1. Types of UM irreps of H (relevant for construction of UM irreps of G). The three 
alternative definitions of the same classification (given for comparison with table 2). 

1 2 

Induction giving d ( H ) t G  giving d ( H ) t G  
which is irreducible 

Subduction obtainable as d ( G ) J H  obtainable through d ( G ) J H  
which is reducible into d ( H ) / d ( H )  

Via orbits one-element orbit two-element orbit 
(i.e. d ( H )  7L d ( H ) )  

which is reducible 

which is irreducible 

(i.e. d ( H )  - d ( H ) )  

Table 2. Types of UMAM irreps of G. The four alternative definitions of the same 
classification of the UM irreps of H, which give the corresponding classification of the UMAM 
irreps of G due to Theorem 1. 

Types of UM 

the definition (2*4 (2*b) 

*-induction giving d ( H )  T G which 

(into twice the UMAM 
irrep d ( H )  + ZK,d(H) )  

d(=i(G)JH 
which is irreducible d ( H )  - d*(H) d ( H )  f d*(H) 

Via *-orbits one-element *-orbit, i.e. there exists Z, two-element 

giving d ( H )  'f G which is irreducible and 
is reducible d ( H ) - d * ( H )  d ( H ) f d * ( H )  

Subduction obtainable as obtainable through C&~G)LH which is 
reducible into d ( H )  + d*(H),  and 

d*(h)  = Z-'d(h)Z,  V h  E H  and 
z z *  = d(?) 

*-orbit, i.e. 
d ( H )  7L d*( H )  zz* = 4 2 )  

Character test X = 1 x=-1 x=o  
where X = ( l / I H I )  1 ~ [ ( s h ) ~ ]  

h e H  

The *-induction method achieves all finite-dimensional UMAM irreps of G when all 
the finite-dimensional UM irreps of H are made use of. This is a direct consequence of 
the Basic Theorem and the fact that *-induction and subduction are essentially inverse 
to each other. (The corresponding conclusion is reached also in co-representation 
theory, Wigner 1959, p 344.) In the case of UM irreps of G the role of the Basic 
Theorem is taken over by a completely different argument (see Zak 1960). 
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4. Evaluation of the matrix 2 

4.1. Construction 

In the cases of the (1) and (1*) kind UM irreps of H, induction and *-induction give 
reducible UM and UMAM reps of G. For their reduced forms the respective 2 matrices 
are indispensable, since, as proved, these forms are: d ( H )  + ( i Z ) d ( H )  in the UM case, 
and d ( H )  + Z K o d ( H )  in the UMAM case. In the following theorem we treat the UM and 
UMAM cases simultaneously (the latter in square parentheses). 

Theorern 4. (Theorem on the evaluation o f Z ) .  Let d ( H )  be a given UM irrep of H of the 
(1) [l"] kind. The unitary matrix Z satisfying 

Z t d ( h ) Z  = d[*](s- 'hs),  V h  E H ,  (20 )  

can be evaluated as follows. 
Defining the n x n matrices 

Pi = ( n / l H / )  c dr1 (h)dr*l(s- lhs) ,  i = 1 , 2  , . . . ,  n, 
heft 

one sees that P1 is a ray projector. One evaluates its eigenvector x (as a number 
column), of norm 1, corresponding to the eigenvalue 1. Then the ith row Zi of 2 is 
found as 

(22 )  t t  z i = x  P i ,  i = 1 , 2  , . . . ,  n. 

The open phase factor of 2, which is its known indeterminacy, results from the arbitrary 
phase factor in the choice of the eigenvector x .  

Proof. From the orthogonality relations for the matrix elements of d ( H ) ,  i.e. 

(n / lHI )  1 dT1 (h)di j (h)  = S i l S l j ,  
h 6 H  

it folrows that 

(nl lHI)  1 dT1 ( h ) d ( h )  = (1 0 . .  . O ) t ( l  0 . .  - 0 ) .  
h a H  

Since the unitary matrix Z exists, we may apply Z t  . . . Z to (23 )  and, in view of (20 )  and 
(21 ) ,  one obtains P I  = Z:Z1. Putting x = Z : ,  one has P I  = xx , implying P l x  = x. t 

Analogously, the orthogonality relations 

(n / lH l )  C d?1 (h)djk(h)  = S j i a I k ,  
h a H  

understood as the ( j ,  k) element of a matrix equation, after application of Z' , , . 2 go 
over into Pi = Z:Z1. Adjoining one obtains P' = Z:Zi, giving Z I P :  = Zi, because 
z1z: = x t x  = 1. QED 

4.2. Practical aspects 

To give the practical aspects of the construction of the UMAM irrep of G out of a given 
UM irrep d ( H )  of H, we suggest the following procedure. 

( 1 )  If d ( H )  is odd-dimensional, then one should compute d*(H) and find out if 
d ( H )  and d*(H) are equivalent or not by comparing their characters. If d ( H )  7L 6*(H) ,  
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i.e. in the (2*b) case, one uses the *-induction formulae (15a, b) .  Otherwise, one makes 
use of the following lemma. 

Lemma 4. I f d ( H )  - d*(H) and dim[d(H)] is odd, then the (1*) case is characterised by 
det[d(s2)]> 0, whereas the (2*a) case occurs iff det[d(s2)] < 0. 

Proof. Taking the determinant of ZZ* = *d(s2)  (cf table 2) one obtains det[d(s2)] = 
*Idet 212. QED 

Thus, if det[d(s2)] > 0, one should construct Z as described in Theorem 4, so that 

d(,,(G) d ( H )  +ZKod(H) .  (24) 

If det[d(s2)] < 0, then d(,,(G) is computed via the *-induction formulae (15a, b). 
(2) If d ( H )  is even-dimensional, then one can choose one of the following two ways: 
(a) From the given character table of d ( H )  one evaluates X =  

(l/IHI) X,,,~[(sh)~], which must be +1, -1 or 0. If X = +1, one constructs Z as 
described in Theorem 4 to obtain (24). If X = -1 or 0, then d(,)(G) is computed via the 
*-induction formulae (15a, b) .  

(b) As in the odd-dimensional case, having computed 6*(H),  one easily infers 
whether one is dealing with two *-orbits or with one. If the former is true, one utilises 
(15a, 6 ) .  If d ( H )  - 6*(H), one may evaluate Z (Theorem 4) and compute Z Z * ~ ( S ) - ~ ,  
which must be +1 or -1. In the former case d(,,(G) is given by (24), and in the latter by 

It is easy to ascertain via (12a, 6 )  that these matrices form a UMAM irrep of G. It is 
equivalent to the one obtained by (15a, b )  according to the criterion in Remark 4. 

5. Conclusions 

Our approach rests on two basic ideas, which we believe to be novel: (1) antimatrices, 
and (2) direct inversion of subduction, consisting in *-induction (Theorem 3) and 
construction of the matrix Z (Theorem 4): 

(1) Clearly, there is no other way to achieve homomorphism G =d(,)(G) =D(,)(G) 
(= and = denote homomorphism and isomorphism respectively), but to do the natural 
thing: to utilise antilinear operators in C" (i.e. antimatrices). We hope to have shown 
that the gain from the homomorphism G = D(,,(G) outweighs the fact that one is not 
used to the antimatrices. The more so because the homomorphism enables one to trace 
the analogies and the differences between the linear and the linear-antilinear 
representations. 

It is noteworthy that the need for linear-a?tilinear representations is, due to 
quantum mechanical reasons (the first map G =D(,)(G)) .  The second map D(,)(G) = 
D(,,(G) is nothing but representingd.(,,(G) in an orthonormal basis in the state space of 
the quantum system. An important point to note is that representation of d(, ,(G) is 
very useful primarily because both the absolute basis and KO (defined by the former) are 
unique and have simple properties as mathematical objects. The antimatrix KO does 
not depend either on the orthonormal basis in the state space or on the element sh E G 
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which is represented by D,(sh) =D(sh)Ko. Because of this uniqueness, KO can be 
eliminated from D( , ) (G) ,  going over to the co-representation, But, as we have tried to 
show, it pays to keep KO, because without it one does not have homomorphism and the 
latter gives valuable conceptual and practical simplifications. 

(2) A careful look at table 2 makes it clear that the procedure of subduction is very 
different in the (1*) case on the one hand, and the (2”a) and (2*b) cases on the other. 
Hence, the direct inversion ofsubduction is necessarily piecewise: in the (1”) case one has 
to add the coset {D,(sh)lh E H } ,  which hinges on the construction of D,(s) = ZKo; 
whereas in the ( 2 * )  cases it is *-induction that achieves the direct inversion of 
subduction. It seems to us that subduction and its direct inverse are the most natural 
and the simplest possible connections between the UMAM irreps of G and the UM irreps 
of H. Therefore, it is best to base the construction of the former on this connection, 

It should be pointed out that *-induction gives a standard form in the (2*a) case (cf 
(15a, b ) )  which is different from that of Wigner, given by the matrix factor in (25 )  (cf 
also van den Broek 1979). 

It is known that co-representation theory found its most important application in the 
Shubnikov black-and-white (or magnetic) point and space groups. It might be worth- 
while to take a new look at the co-representations of these groups from the point of view 
of the UMAM irreps. However, our aim is somewhat different. We have constructed the 
line groups and their irreps (VujiEiE et a1 1977 and BoioviE et a1 1978) as the symmetry 
groups of stereoregular polymer molecules. Work is in progress on constructing the 
black-and-white line groups and thereafter their UMAM irreps along the lines expoun- 
ded in this paper. 
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Appendix (Proof of the Theorem on Induction) 

The induction procedure, which is common to both cases (1) and ( 2 ) ,  has two immediate 
consequences: 

(i) ~ ’ ( h )  = x ( h )  +, f (h ) ,  V h  E H ,  where x and x’ are the characters of d ( H )  and of 
d ( H ) f G  respectively (cf (15a, b)) .  

(ii) ~ ‘ ( s h )  = 0, V h  E H  (cf ( 1 % ) ) .  As a consequence of (i) and (ii) one obtains: 
(1/IGI) z,,,X’(g>Xf*(g)=(1/21HI) ~ , , , [ ~ ( h ) + k ( h ) l x [ ~ ( h ) + ~ ( h ) l * ,  or in terms of 
scalar products 

(AI)  

As seen from (Al), x = ,f implies (x’lx’) = 2, whereas x # ,f entails (x’lx’) = 1. This 
means that d(H)TG is reducible iff d ( H ) - d ( H ) ,  and the former is irreducible iff 
d ( H )  + d(H) .  

When d ( H ) f G  is reducible, then, because of (x’lx‘) = 2, it is seen to decompose into 
two inequivalent UM irreps of G: 

(x’lx’) = (&x +x, x +X). 

X ’ k )  = x i  ( g )  +xh ( g ) ,  V g  E G. 
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Since D(H)TG is always self-associate, 

x i  (8)  + x ; ( g )  = 2; ( g )  +iL(g), Vg E G. 
This requires that either x i  (g) = i ;  ( g )  and ,Y; ( g )  = i 4  ( g ) ,  or x i  (g) = 2; (g), because the 
decomposition of any rep into irreps is unique. The former is impossible because the 
subduced UM rep of d (H) tG to H would consist of four UM irreps of H (cf Theorem 2) 
in contradiction with the linear analogue of (15a). Thus, the two inequivalent UM irreps 
of G are mutually associate. 

It is straightforward to see that the similarity transformation by T =  

(2)-'12( I ) makes the linear analogue of (15a, b) ,  i.e. I -2 

quasidiagonal as stated in the Theorem. For this one needs d ( h )  = Z t d ( h ) Z  (where 2 
is obviously determined up to an arbitrary phase factor), and d ( s 2 )  = Z 2 .  The latter 
follows from Z 2  = eiCd(s2), which is obtained by analogy with the UMAM case (cf (19)). 
However, there is an essential difference between the UM and the UMAM cases, namely, 
here cp depends on 2 and can be made zero by a suitable phase factor in the choice of 2. 

QED 
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